Superlattices of PbTiO3/SrTiO3 Exhibit Improper Ferroelectricity
نویسندگان
چکیده
منابع مشابه
Dual nature of improper ferroelectricity in a magnetoelectric multiferroic.
Using first-principles calculations, we study the microscopic origin of ferroelectricity (FE) induced by magnetic order in the orthorhombic HoMnO3. We obtain the largest ferroelectric polarization observed in the whole class of improper magnetic ferroelectrics to date. We find that the two proposed mechanisms for FE in multiferroics, lattice and electronic based, are simultaneously active in th...
متن کاملFirst principles study of improper ferroelectricity in TbMnO3.
We carry out a first-principles theoretical study of the magnetically induced polarization in orthorhombic TbMnO3, a prototypical material in which a cycloidal-spin structure generates an electric polarization via the spin-orbit interaction. We compute both the electronic and the lattice-mediated contributions to the polarization and find that the latter is strongly dominant. We analyze the spi...
متن کاملHybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling.
First-principles calculations are presented for the layered perovskite Ca3Mn2O7. The results reveal a rich set of coupled structural, magnetic, and polar domains in which oxygen octahedron rotations induce ferroelectricity, magnetoelectricity, and weak ferromagnetism. The key point is that the rotation distortion is a combination of two nonpolar modes with different symmetries. We use the term ...
متن کاملInterfacial enhancement of ferroelectricity in CaTiO3/BaTiO3 superlattices
We carry out first-principles calculations for CaTiO3/BaTiO3superlattices with epitaxial strain corresponding to growth on a SrTiO3 substrate, and consider octahedral rotations as well as ferroelectric distortions. The calculations are done as a function of electric displacement field, and both a macroscopic and a local electrostatic analysis are carried out. We find that strong octahedral rota...
متن کاملFerroelectricity driven magnetism at domain walls in LaAlO3/PbTiO3 superlattices
Charge dipole moment and spin moment rarely coexist in single-phase bulk materials except in some multiferroics. Despite the progress in the past decade, for most multiferroics their magnetoelectric performance remains poor due to the intrinsic exclusion between charge dipole and spin moment. As an alternative approach, the oxide heterostructures may evade the intrinsic limits in bulk materials...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MRS Bulletin
سال: 2008
ISSN: 0883-7694,1938-1425
DOI: 10.1557/mrs2008.116